Prerequisites: ENGR 2410

Credits: 4 ENGR

Hours: 4-0-8

Usually offered: Spring

For information contact: Diana Dabby

Course description: Signal processing — the modeling, transformation, and manipulation of signals and their content — underpins virtually all facets of our daily lives due to the coupling of computing and communications in consumer, industrial, and public sector applications. Discrete-time signals, obtained through the sampling of continuous-time signals, and their frequency domain equivalents, can undergo transformation via systems, e.g., finite-duration impulse response (FIR) and infinite-impulse response (IIR) filters. Digital filter design and analysis conjoins such topics as difference equations, the z-transform, stability, frequency response, the discrete Fourier transform, FFT algorithms, windowing, practical implementation structures, A/D and D/A conversion techniques. After researching signal processing applications during the first part of the course, students initiate and realize individual DSP projects by end-of-term.

Follow